Ir al contenido principal

Grafos

 En matemáticas y en ciencias de la computación, la teoría de grafos estudia las propiedades de los grafos.

Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas (edges en inglés) que pueden ser orientados o no.

Típicamente, un grafo se representa mediante una serie de puntos (los vértices) conectados por líneas (las aristas).

Complementos del Grafo


Tipos de Grafos

Un grafo dirigido o grafo orientado, es un tipo de grafo en el cual el conjunto de las aristas tiene una dirección definida, a diferencia del grafo generalizado, en el cual la dirección puede estar especificada o no.



Grafo simple o simplemente grafo es aquel que acepta una sola una arista uniendo dos vértices cualesquiera. Esto es equivalente a decir que una arista cualquiera es la única que une dos vértices específicos. Es la definición estándar de un grafo. No contiene aristas paralelas, lazos ni aristas dirigidos.

Un grafo se dice conexo si, para cualquier par de vértices a y b en G, existe al menos una trayectoria (una sucesión de vértices adyacentes que no repita vértices) de a a b.

Matriz de Adyacencia

Una de las maneras más fáciles de implementar un grafo es usar una matriz bidimensional. En esta implementación de matriz, cada una de las filas y columnas representa un vértice en el grafo. El valor que se almacena en la celda en la intersección de la fila X y la columna Y indica si hay una arista desde el vértice X al vértice Y.


Ejemplo


Ejercicio: 


Comentarios

Entradas populares de este blog

Tipos de árboles binarios

Un árbol binario es un tipo de árbol en que cada vértice máximo puede tener dos hijos; su nodo raíz está enlazado a dos subárboles binarios disjuntos denominados subárbol izquierdo y subárbol derecho. Los árboles binarios no son vacíos ya que como mínimo tienen el nodo raíz. Árbol Binario Lleno Es aquel árbol en el que los nodos de cada nivel tienen sus dos hijos o ninguno (si es hoja). Árbol binario completo Es aquel árbol binario lleno en que todas sus hojas están en el nivel n o n-1 considerando que para un hijo derecho hay siempre un hijo izquierdo. Por lo tanto, todo árbol binario lleno es completo, pero no la viceversa. Propiedades de Árboles Binarios Recorrido de un Árbol binario Un recorrido en un árbol binario es Una operación que consiste en visitar todos sus vértices o nodos, de tal manera que cada vértice se visite una sola vez. Se distinguen tres tipos de recorrido: INORDEN, POSORDEN Y PREORDEN.   En cada recorrido se tiene en cuenta la posición de la raíz (de ahí su n...

Inducción matemática

La inducción matemática es un método de demostración que se utiliza cuando se trata de establecer la veracidad de una lista infinita de proposiciones. El método es bastante natural para usarse en una variedad de situaciones en la ciencia de la computación. Los números naturales se definen de manera inductiva. Es decir, incluso hablando muy informalmente, al describir los números naturales no podemos nombrar a todos los números naturales puesto que son infinitos, lo que hacemos normalmente es decir algo como “1 es un número natural, también 2 y 3 y 4 y así te sigues, si le sumas 1 a un número natural te da otro número natural”. Base Inducción Matemática Analogía de los Dominós Si ponemos todos nuestros dominós parados en una fila, necesitamos sólo asegurarnos de dos cosas para que se caigan: a) Que exista al menos un dominó que se caiga. b) Que si un dominó cae, empuja al siguiente.    Para la primera parte, no tiene que ser el primer dominó. Si tiramos el primero, queremos que...